Lie Algebras – Lecture 1

M. Reineke

12 November 2020, Ringvorlesung GRK 2240

Overview

Aim

- Introduce main classes of Lie algebras
- Discuss lots of examples
- Structure theory from general to (semi)simple Lie algebras

k always denotes algebraically closed field of characteristic 0.

Definitions

Definition

Lie algebra: k-vector space $\mathfrak g$ with bilinear $\mathit{bracket}\ [_,_]: \mathfrak g \times \mathfrak g \to \mathfrak g$ such that

- [y,x] = -[x,y] for all $x,y \in \mathfrak{g}$ (antisymmetry)
- [x, [y, z]] = [[x, y], z] + [y, [x, z]] for all $x, y, z \in \mathfrak{g}$ (Jacobi identity)

Discussion of definitions

$$[y,x] = -[x,y],$$

 $[x,[y,z]] = [[x,y],z] + [y,[x,z]]$

Remark

In other words, $[-, -]: \bigwedge^2 \mathfrak{g} \to \mathfrak{g}$.

How to memorize the Jacobi identity?

Definition: Derivation of an (nonassoc.) algebra A: linear map $d: A \rightarrow A$ such that d(ab) = d(a)b + ad(b) for $a, b \in A$ (Leibniz rule).

Jacobi identity means: any $[x, _]$ is a derivation on \mathfrak{g} .

Alternatively: [x, [y, z]] + cyclic shifts = 0.

Some standard definitions

Definition

- Lie subalgebra: subspace $\mathfrak{h} \subset \mathfrak{g}$ such that $[\mathfrak{h},\mathfrak{h}] \subset \mathfrak{h}$.
- Homomorphism of Lie algebras: linear map $\varphi : \mathfrak{g} \to \mathfrak{h}$ such that $\varphi([x,y]) = [\varphi(x), \varphi(y)].$
- $I \subset \mathfrak{g}$ ideal if $[\mathfrak{g}, I] \subset I$.

As usual, then \mathfrak{g}/I is Lie algebra.

And $\mathfrak{g}/\mathrm{ker}(\varphi) \simeq \mathrm{im}(\varphi)$ as Lie algebras

Examples 1: Lie algebras from associative algebras

Examples

A associative k-algebra: A is Lie algebra via [x, y] = xy - yx.

In particular $A = \operatorname{End}_k(V)$: as Lie algebra called $\mathfrak{gl}(V)$.

In particular $A = M_n(k)$: as Lie algebra called $\mathfrak{gl}_n(k)$.

Linear basis of $\mathfrak{gl}_n(k)$: E_{ij} for i, j = 1, ..., n, with bracket

$$[E_{ij}, E_{kl}] = \delta_{jk} E_{il} - \delta_{il} E_{kj}.$$

A Lie subalgebra of some $\mathfrak{gl}_n(k)$ is called a *linear* Lie algebra.

Examples 2: Lie algebras of derivations

Examples

A arbitrary (even nonassoc.) algebra:

 $\operatorname{Der}_k(A) = \{d : A \to A \text{ derivation}\} \subset \mathfrak{gl}(A) \text{ Lie subalgebra!}$

In particular X (smooth) affine variety: $\operatorname{Der}_k(k[X])$ Lie algebra of vector fields on X.

Concrete example: $\operatorname{Der}_k(k[t]) = k[t] \frac{d}{dt}$ (infinite-dimensional!)

with bracket $[P\frac{d}{dt},Q\frac{d}{dt}]=(PQ'-P'Q)\frac{d}{dt}.$

Basis $e_n = t^n \frac{d}{dt}$: bracket $[e_m, e_n] = (n - m)e_{m+n-1}$.

Examples 3: an exotic Lie algebra of derivations

Examples

Nonassociative algebra of Cayley octonions: $\mathbb{O} = \begin{bmatrix} k & k^3 \\ k^3 & k \end{bmatrix}$ with multiplication

$$\begin{bmatrix} \lambda & v \\ w & \mu \end{bmatrix} * \begin{bmatrix} \lambda' & v' \\ w' & \mu' \end{bmatrix} =$$

$$= \begin{bmatrix} \lambda \lambda' - v \cdot w' & \lambda v' + \mu' v + w \times w' \\ \lambda' w + \mu w' + v \times v' & \mu \mu' - w \cdot v' \end{bmatrix}.$$

 $\mathrm{Der}_k(\mathbb{O})=:\mathfrak{g}_2$ an exceptional simple Lie algebra.

Examples 4: Lie algebra of algebraic group, abstract

Examples

G affine algebraic group: k[G] carries G-action via (gf)(h) = f(hg). Then $\operatorname{Der}_k(k[G])$ contains

$$\operatorname{Lie}(G) = \{d \in \operatorname{Der}_k(k[G]) : d(gf) = gd(f) \text{ for all } g \in G\}$$

Lie algebra of invariant vector fields.

 $1 \in G$ corresponds to maximal ideal $\mathfrak{m} \subset k[G]$:

$$\operatorname{Lie}(G) \simeq (\mathfrak{m}/\mathfrak{m}^2)^* = T_1(G),$$

Lie algebra structure on tangent space to 1 in G.

Examples 5: Lie algebra of algebraic group, concrete

Examples

 $G \subset GL_n(k)$ closed subgroup: linear algebraic group.

$$\mathcal{T}_1(G) \subset \mathcal{T}_1(\mathrm{GL}_n(k)) \simeq \mathfrak{gl}_n(k)$$
 (as Lie algebra)

is a Lie subalgebra!

$$T_1(G) = \{x \in \mathfrak{gl}_n(k) : f(1 + \epsilon x) = 0 \text{ for all } f \in \mathbb{V}(G)\}$$

where $\epsilon^2 = 0$.

Examples 6: classical Lie algebras

Examples

$$\bullet \ \mathrm{SL}_n(k) = \{g \in \mathrm{GL}_n(k) : \det(g) = 1\} \subset \mathrm{GL}_n(k).$$

$$\det(1+\epsilon x) = 1 + \epsilon tr(x) \bmod \epsilon^2$$

$$\operatorname{Lie}(\operatorname{SL}_n(k)) = \{x \in \mathfrak{gl}_n(k) \, : \, \operatorname{tr}(x) = 0\} = \mathfrak{sl}_n(k).$$

 $\bullet \ \operatorname{SO}_n(k) = \{g \in \operatorname{GL}_n(k) \, : \, gg^t = 1, \, \det(g) = 1\} \subset \operatorname{GL}_n(k).$

$$1 = (1 + \epsilon x)(1 + \epsilon x^{t}) = 1 + \epsilon (x + x^{T}).$$

$$\operatorname{Lie}(\operatorname{SO}_n(k)) = \{x^T = -x\} =: \mathfrak{so}_n(k) \subset \operatorname{gl}_n(k).$$

Similarly

$$\mathfrak{sp}_{2n}(k) = \{x^T J = -Jx\} \subset \mathfrak{gl}_{2n}(k), J = \begin{vmatrix} 0 & E_n \\ -E_n & 0 \end{vmatrix}.$$

Examples 7: even more linear Lie algebras

Examples

- \mathfrak{b}_n upper triangular matrices,
- n_n strictly upper triangular matrices,
- \mathfrak{t}_n diagonal matrices.

$$\mathfrak{t}_n \oplus \mathfrak{n}_n = \mathfrak{b}_n \subset \mathfrak{gl}_n$$
.

Examples 8: two prominent three-dimensional Lie algebras

Examples

Heisenberg Lie algebra: basis x, y, z, bracket [x, y] = z, $[z, _] = 0$. Isomorphic to \mathfrak{n}_3 .

$$\mathfrak{sl}_2(k)$$
 has basis $e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $f = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$,

bracket [e, f] = h, [h, e] = 2e, [h, f] = -2f.

Realized by derivations on $k[X, Y]_n$ (homogeneous polynomials of degree n) via

$$E = Y \frac{\partial}{\partial X}, \ F = X \frac{\partial}{\partial Y}, \ H = Y \frac{\partial}{\partial Y} - X \frac{\partial}{\partial X}.$$

(Irreducible representations of $\mathfrak{sl}_2(k)$).

Structure theory: from all Lie algebras to semisimple

Definition

Commutator subalgebra: $[\mathfrak{g},\mathfrak{g}] \subset \mathfrak{g}$.

Lower central series: $\mathfrak{g}_0 = \mathfrak{g}$, $\mathfrak{g}_n = [\mathfrak{g}, \mathfrak{g}_{n-1}]$ for $n \ge 1$.

Derived series: $\mathfrak{g}^{(0)} = \mathfrak{g}$, $\mathfrak{g}^{(n)} = [\mathfrak{g}^{(n-1)}\mathfrak{g}^{(n-1)}]$ for $n \ge 1$.

Theorem

g finite dimensional:

 \mathfrak{g} abelian, i.e. $[\mathfrak{g},\mathfrak{g}]=0$, iff $\mathfrak{g}\hookrightarrow\mathfrak{t}_n$ for some n.

Engel \mathfrak{g} nilpotent, i.e. lower central series terminates, iff $\mathfrak{g} \hookrightarrow \mathfrak{n}_n$ for some n.

Lie \mathfrak{g} solvable, i.e. derived series terminates, iff $\mathfrak{g} \hookrightarrow \mathfrak{b}_n$ for some n.

Ado Any $\mathfrak{g} \hookrightarrow \mathfrak{gl}_n$ for some n.

Radical and semisimplicity

Definition

 ${\mathfrak g}$ simple if it has no ideals except $0,{\mathfrak g}.$

Any $\mathfrak g$ has unique maximal solvable ideal $\mathrm{rad}(\mathfrak g)\subset \mathfrak g$, the radical of $\mathfrak g$.

 \mathfrak{g} semisimple if $rad(\mathfrak{g}) = 0$.

Canonical decomposition into solvable and semisimple part:

$$0 \to \mathrm{rad}(\mathfrak{g}) \to \mathfrak{g} \to \mathfrak{g}/\mathrm{rad}(\mathfrak{g}) \to 0.$$

Theorem

Equivalent:

- g semisimple
- Killing form $(x, y) \mapsto \operatorname{tr}([x, _] \circ [y, _] \in \operatorname{End}(\mathfrak{g}))$ nondegenerate
- $\mathfrak{g} \simeq \bigoplus_{i=1}^n \mathfrak{g}_i$, all \mathfrak{g}_i simple.

Final slide

Thank you!