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Eminent mathematicians

Who are these eminent mathematicians?

Émile Picard
(1856–1941)

Richard Brauer
(1901–1977)
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Picard group and Brauer group

Picard group and the Brauer group are named after them, two
extremely important constructions. I give a somewhat unusual
definition, for rings R:

The group Pic(R) comprises isomorphism classes of R-modules L
such that L⊗ R ′ ' R ′ for some faithfully flat R ⊂ R ′. Such L are
called invertible modules.

The group Br(R) comprises equivalence classes of R-algebras A
such that A⊗ R ′ ' Matn(R ′) with n ≥ 1 and some faithfully flat
R ⊂ R ′. Such A are called Azumaya algebras.

In both cases, group structure comes from ⊗.
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Examples for invertible modules

Examples for invertible modules over rings R:

Fields, local rings, principal ideal domains?

Factorial rings?

Dedekind domains?
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More examples

Coordinate rings R = Γ(C r {z},OC ) for projective curve C .

The point z ∈ C yields invertible sheaf L = OC (z). Then

Pic(R) = Pic(C )/ZL .

Projective line C = P1 gives Pic(R) = Z/dZ, with d = [κ(z) : k].

For elliptic curve C : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 one

gets Pic(R) = C (k), when z is the origin.
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Examples of Azumaya algebras

Examples of Azumaya algebras: The quaternion algebra

H = {aE + bI + cJ + dK | a, b, c, d ∈ R}

generated by the complex matrices

I =

(
i 0
0 −i

)
and J =

(
0 1
−1 0

)
and K =

(
0 i
i 0

)
.

Clearly H⊗ C = Mat2(C). Surprising formula:

(aE + . . .+ dK ) · (aE − . . .− dK ) = a2 + . . .+ d2 ∈ R≥0

So non-zero quaternions are invertible, hence H 6= Mat2(R).
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Cohomology

Usually it is almost impossible to compute Pic(R) and Br(R) from
definitions. But can be expressed in terms of cohomology!

Invertible modules L are twisted forms of R. Such correspond to
first cohomology with coefficients in Aut(R) = Gm, so

Pic(R) = H1(R,Gm).

Interpretation via cocycles: Choose basis e1 ∈ L⊗ R ′. Then
write (e1 ⊗ 1) = λ · (1⊗ e1) for some λ ∈ (R ′ ⊗ R ′)×. Satisfies
cocycle condition, yields cohomology class

[λ] = [L] ∈ H1(R,Gm).
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Exponential Sequence

This works not only for rings, but for ringed spaces, or ringed
topoi. Cohomological interpretation relates Pic(X ) to other groups:

Let X be a complex space. Have exponential sequence

0 −→ ZX
2πi−→ OX

exp−→ O×X −→ 1.

Gives long exact sequence

H1(X ,Z) −→ H1(X ,OX ) −→ Pic(X ) −→ H2(X ,Z).

For α ∈ H1(X ,OX ), the resulting sheaf L is obstruction to make
α integral.

The coboundary defines first Chern class c1(L ) ∈ H2(X ,Z).
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Divisor sequence

Let X be an integral scheme. Have divisor sequence

1 −→ O×X −→ R×X −→ DivX −→ 0.

Yields long exact sequence

Γ(X ,R×X ) −→ Div(X ) −→ Pic(X ) −→ H1(X ,R×X )

Term on the right vanishes, because coefficients are constant and
X is irreducible: No obstructions!

So each invertible sheaf L is of the form OX (D) for some Cartier
divisor D ∈ Div(X ).
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Azumaya algebras

Now back to Brauer group Br(R) and Azumaya algebras A. These
are twisted forms of matrix algebras Matn(R).

By Skolem–Noether, each automorphism of Matn(R) is locally
given by conjugacy, so we get class

[A] ∈ H1(R,PGLn)

However, elements in Br(R) are equivalence classes, modulo

A ∼ A′ ⇐⇒ A⊗Matr (R) ' A′ ⊗Mats(R).

Gives inverses, via identification A⊗ Aop = EndR(A) ' Matn(R).
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Cocycle construction

Cocycle construction: Choose ϕ : A⊗ R ′ → Matn(R ′).

Write (ϕ⊗ 1) = ψ ◦ (1⊗ ϕ) for some ψ ∈ PGLn(R ′ ⊗ R ′).

Choose lift ψ̃ ∈ GLn(R ′ ⊗ R ′), after refining R ′.

Cocycle condition usually fails for lift; obstruction is 2-cochain

α = ψ̃12 · ψ̃−102 · ψ̃01 ∈ Gm(R ′ ⊗ R ′ ⊗ R ′)

Now cocycle conditions holds, gives [α] = [A] ∈ H2(R,Gm).
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Grothendieck’s interpretation

Works for any ring, or ringed space, or ringed topos. Gives
Grothendieck’s cohomological interpretation

Br(X ) ⊂ H2(X ,Gm)

Using liftings to SLn instead of GLn, one sees that Brauer group is
torsion.

But cohomology is not torsion, in general: Exponential sequence
for complex spaces gives

H2(X ,Z) −→ H2(X ,OX ) −→ H2(X ,O×X ) −→ H3(X ,Z).
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Projective representations

Application in group theory: Let G be an finite group, and
ρ : G → PGLn(C) be a projective representation. Can one lift it to
a linear representation?

For each g ∈ G choose lift Ag ∈ GLn(C) of the class ρ(g).
Write

Ag · Ah = αg ,hAgh

for some αg ,h ∈ C×. Satisfies cocycle relation, gives group
cohomology class [α] ∈ H2(G ,C×). Classically called Schur
multiplier. Can be viewed as Brauer group of classifying space
X = BG .
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Cup products

Set µn = Gm[n]. Canonical pairing Z/nZ× µn → Gm, induces
cup product

∪ : H1(k ,Z/nZ)× H1(k , µn) −→ H2(k ,Gm) = Br(k).

Let k ⊂ K be a Galois extension with group Z/nZ =< σ >, and
β ∈ k×. Then

A = K [T ]/(tn − β, λT − Tσ(λ))

is Azumaya algebra, satisfy [A] = [K ] ∪ [β].

These are called cyclic algebras, generalize quaternion algebras H.
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Brauer–Severi varieties

Let k be a ground field. A scheme X is called Brauer–Severi
variety if

X ⊗ k ′ ' Pn ⊗ k ′

for some field extension k ⊂ k ′. In other words, X is a twisted
form of Pn.

Example: quadric curves X ⊂ P2. Indeed:

X : T 2
0 + T 2

1 + T 2
2 = 0

has no rational point over k = R, but becomes P1 over k ′ = C.
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Cohomology classes

Using the universal property of Pn, one sees that

Aut(Pn) = PGLn+1 .

So Brauer–Severi varieties give rise to classes [X ] ∈ Br(k), as do
Azumaya algebras.

In fact, the categories of twisted forms of Matn+1(k) and twisted
forms of Pn are equivalent.
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Obstruction against rational points

Theorem: Let X be a Brauer–Severi variety. The cohomology class

[X ] ∈ H2(k,Gm)

is the obstruction against the existence of a rational point a ∈ X.

The proof relies on an interpretation of Pn as a moduli space,
serves as baby example for moduli problems of second lecture.
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Preliminary considerations

Preliminary considerations:

Write P = Pn = P(E ), and consider the dual projective space
P∗ = P(E ∗).

The rational points a ∈ P correspond to hyperplanes H ⊂ P∗.

The resulting invertible sheaf L = OP∗(H) is very ample, with
h0(L ) = n + 1, and defines an isomorphism P∗ → P(V ), for the
linear system V = H0(P,L ).

Likewise, Brauer–Severi variety X comes with a dual variety X ∗.
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Proof of Theorem

Proof for the Theorem:

Suppose there is a rational point a ∈ X . Corresponds to hyperplane
H ⊂ X ∗, yields invertible sheaf L = OX∗(H) and isomorphism
X ∗ → P(V ) as above. Biduality X = X ∗∗ gives X ' Pn, hence
[X ] = 0.

Conversely, suppose [X ] ∈ H2(k,Gm) is trivial. Then Brauer–Severi
variety comes from some H1(k,GLn+1). But this group is trivial by
Hilbert 90. Thus X ' Pn, which contains rational points.
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Thank you very much for the attention!


